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We show that a nondegenerate multi-frequency parametric oscillator has different properties com- 
pared with an usual three-wave parametric oscillator. We consider, as an example, a scheme of a 
resonant cw monolithic microwave-optical parametric oscillator based on high-Q whispering gallery 
modes excited in a nonlinear dielectric cavity. Such an oscillator may have an extremely low thresh- 
old and stable operation, and may be used in spectroscopy and metrology. The oscillator mimics 
devices based on resonant x ( 3 )  nonlinearity and can be utilized for efficient four-wave mixing and 
optical comb generation. Moreover, the oscillator properties are important for better understanding 
stability conditions of long-base interferometers with movable mirrors that are currently used for 
gravity wave detection. 

PACS numbers: 

I. INTRODUCTION 

Optical parametric oscillators (OPO) have been exten- 
sively studied since the discovery of lasers [l-31. Prop- 
erties of OPO are quite understood by now [4-61. The 
cw-OPO have been considered as an ideal device that 
are able to  generate a t  broad range of wavelengths. Be- 
cause of their reliability and excellent stability cw-OPO 
are widely used, for example, in frequency chains [7, 81, 
optical frequency comb generators [9-121, and for prepa- 
ration of nonclassical states of light [13]. 

One of the main restrictions of efficient parametric os- 
cillations results from phase matching conditions. Index 
of refraction in nonlinear materials strongly depends on 
the frequency. This dependence brakes momentum con- 
servation for pump and generated field photons propa- 
gating in a bulk material. To fulfill the phase matching 
conditions periodically poled materials are usually used 

Coupling of fields with significantly different frequen- 
cies, for example, a microwave field and light, is impor- 
tant practical as well as fundamental problem. Paramet- 
ric processes may be helpful here. However, realization 
of phase matching for strongly nondegenerate paramet- 
ric interactions is especially complicated. For example, 
index of refraction of LiNbO3 differs more than twice 
for light and microwave fields. A way of solution of the 
problem was recently proposed and realized for a pla- 
nar geometry [lo] and for whispering gallery modes [14- 
201. Efficient resonant interaction of optical whispering 
gallery modes and a microwave mode were achieved by 
engineering shape of a microwave resonator coupled to a 
dielectric optical cavity. To achieve interaction the op- 
tical cavity and the microwave resonator were pumped 
from outside. The outgoing light was modulated as the 
result of the interaction. 

We here show that parametric interaction among waves 

[41. 

with substantially different frequencies may significantly 
differ from usual OPO behavior. We theoretically study 
two closely related examples: a nondegenerate OPO that 
converts light into light and microwaves and an optical 
parametric process that converts light into light and mir- 
ror motion in long-base interferometers with moving mir- 
rors [21, 221. 

Both examples involve an optical cavity that has a 
large number of nearly equidistant modes. Each pair of 
these modes may interact via the microwave field. As a 
result, generation of two light modes with frequency dif- 
ference equal to twice frequency of the microwave field is 
possible. This process resembles four-wave mixing pro- 
cesses in x ( ~ )  media [6], where Stokes and anti-Stokes 
fields are generated from a single pumping coherent field 

We show that the system also may be used for gen- 
eration of a comb of harmonics if two-frequency optical 
pumping field is used. Unlike to  usual comb generators 
based on parametric interaction [9-121, our system does 
not need application of a microwave field. Generation 
of harmonics occurs in the way similar to  harmonic gen- 
eration in resonant x ( ~ )  media [24, 251 and stimulated 
Raman scattering in droplets with x ( ~ )  nonlinearity [26- 
291. Two-frequency pumping field leads to  generation of 
the microwave field. The microwave field interacts with 
the pumping and creates equally spaced harmonics. The 
process is the most efficient when i) the frequency differ- 
ence for the two-frequency pumping light corresponds to 
the resonant microwave frequency, and ii) the spectrum 
of optical modes is equidistant. Both these conditions 
may be fulfilled. 

The optical properties of the strongly nondegenerate 
OPO are similar to  the properties of usual atomic or 
molecular resonant structure. Really, our parametric 
system has narrow and stable resonances and results in 
four-wave mixing process as well as generation of multi- 
harmonic field. Hence, we might say that we propose an 
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FIG. 1: Optical-microwave parametric oscillator. Insert: side 
view of the optical dielectric cavity. The boundaries of the 
cavity coincide with the boundaries of a spheroid, shown by 
dashed line. 

”artificial atomic structure”. However, our system is not 
”nonlinear enough”, it has no spontaneous emission, and, 
therefore, it has many differences from a ”natural atom”. 
Some of these similarities and differences are discussed in 
the paper. 

Our theoretical analysis is rather general. As an ex- 
ample of its application to a realistic system we consider 
OPO based on high-Q whispering gallery modes and pro- 
pose a new configuration of a solid state monolithic OPO 
which converts light into light and microwaves. We sug- 
gest to design shape of the microwave resonator as in [16] 
and show that light modulation may appear without mi- 
crowave pumping. The microwave field is generated from 
vacuum as the result of the parametric interaction. 

We assume that pump laser radiation is sent into z- 
cut LiNbOB spheroid optical cavity via coupling diamond 
prism (see in Fig.1). Oblate spheroid cavity shape is es- 
sential to  obtain a large free spectral range [15, 301. The 
optical cavity is placed between two plates of microwave 
resonator. The resonant frequency of the microwave field 
can be adjusted to  fit the frequency difference between 
optical modes by change of the resonator shape. Spec- 
trum of the dielectric cavity may be engineered by chang- 
ing profile of the index of refraction of the cavity material 
as well as shape of the cavity [31]. Due to x ( ~ )  nonlin- 
earity of LiNb03 the modes of the microwave resonator 
and optical cavity are effectively coupled. This coupling 
increase significantly for resonant tuning of the fields due 
to  high quality factors of the modes of optical cavity and 
microwave resonator, and small mode volumes [32-351. 

We show that the threshold of oscillations is as low 
as pW of light pump power for realistic parameters. 
The stability of the signal may be better that of the 
pump due to  high quality factor of the whispering gallery 
modes. Therefore, this OPO configuration not only gives 
a promise for use as a new configuration of optical mi- 
crowave modulator, but also for use as a light source for 

optical frequency measurement and high precision spec- 
troscopy. 

The problem of strongly nondegenerate parametric in- 
stability also arises in a long-base interferometers with 
suspended movable mirrors. The nonlinearity has a pon- 
deromotive origin there. Such interferometers are cur- 
rently used for detection of gravity waves [21, 221. In 
contrast to the mentioned above case of OPO a compa- 
rably low threshold of the oscillations is a disadvantage 
because it substantially reduces the detection sensitivity. 
We show that for an equidistant spectrum of the inter- 
ferometer the threshold may be significantly increased. 
Ideally, if all parasitic modes are suppressed the inter- 
ferometer might be stable even if the frequency of the 
oscillation of a mirror coincides with the free spectral 
range of the optical cavity. 

The paper is organized as follows: In Sec. I1 we recall 
main properties of usual three-mode OPO. In Sec. I11 we 
discuss four-mode OPO. In Sec. IV we study conditions 
of generation of a frequency comb in all-resonant OPO 
with two-frequency optical pumping. In Sec. V we discuss 
stability of a cavity with moving mirrors. 

11. DOWN-CONVERSION OF LIGHT INTO 
LIGHT AND MICROWAVES 

Let us consider a nonlinear interaction of a coherent 
laser radiation, microwave field and generated light radi- 
ation (pump, idler, and signal respectively). Pump and 
signal electromagnetic waves are nearly resonant with 
different modes of an optical nonlinear dielectric cavity 
while microwave field is nearly resonant with a mode of 
the microwave resonator coupled to  the dielectric cavity. 
We assume that only two modes of light and single mode 
of microwaves obeys to  the resonant condition. 

The Hamiltonian describing this system is (see, for ex- 
ample [36]) 

22 = hW,&i + fUJbbtb + FLu,ete + hg(btetii+ i i tk),  (1) 

where w, and wb are the eigenfrequencies of the optical 
cavity modes, w, is the eigenfrequency of the microwave 
resonator mode, ii, 6, and 2 are the annihilation operators 
for these modes respectively, 

is a coupling constant, x(’) is the electro-optic constant 
for the material of the dielectric cavity, V is the whis- 
pering gallery mode volume, V,  is the volume of the mi- 
crowave field, *,, * b ,  and @, are the normalized dimen- 
sionless spatial distributions of the modes. 

Using Hamiltonian (1) we derive equations of motion 
for the field operators 

6 = -iw,a - igE,  (3) 
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6 = -iwa6 - ig&, 

2 = -iwcE - igiJ8. 
(4) 
(5) 

We consider an open system. To describe such systems 
appropriate decay and pumping terms should be intro- 
duced into Eqs. (3-5). The decay with necessity leads 
to leakage of quantum fluctuations into the system. To 
describe these fluctuations we use Langevin approach [3]. 

Let us introduce slow varying amplitudes for the mode 
operators as follows 

7 9 , (6) 8 = Ae-iwot 6 = Be-iw-t E = Ce-iwMt 

where wo is the carrier frequency of the external pump of 
the mode 8, w- and WM are the frequencies of generated 
light and microwaves respectively. These frequencies are 
determined by the oscillation process and can not be con- 
trolled from outside. However, there is a ratio between 
them 

WO = w- +WM. (7) 

Equations for the slow amplitudes of the intracavity 
fields follows from (3-5): 

A = - F A A  - igBC + FA, 

B = -rBB - igCtA + FB, 

C = -rcC - igBtA + F M ,  

(8) 
(9) 

(10) 

where 

F A  = i(wa - WO) + 7, 
rB = qWb - w-) + 7, 
rc = i(wc - wM) + YM, 

FA, FB and Fc are the Langevin forces, y and YM are 
optical and microwave decay rates respectively. 

The Langevin forces are described by the following 
nonvanishing commutation relations: 

[ F ~ ( t ) F i ( t ' ) ]  = [ F ~ ( t ) F k ( t ' ) ]  = 2y6(t - t '),  

[Fc(t)FA(t')] = 2 ~ , d ( t  - t'), 

(11) 

and average values 

where W A  is the power of the pumping of the mode from 
the outside. We assume that the fluctuations entering 
each mode from outside are in coherent state and are 
uncorrelated with each other. 

Let us solve set (8-10) keeping expectation values only. 
Neglecting by optical saturation of the microwave oscil- 
lations we obtain from (8) and (10) in the steady state 

(C)  = - i - (B*) (A) .  9 
rc 

Substituting (13) and (14) into (9) we get 

This equation has a nontrivial steady state solution if the 
expression in parentheses is equal to zero. From the real 
and imaginary parts of this expression we derive equa- 
tions for the amplitude and frequency of the generated 
field 

Expression for the oscillation threshold can be found us- 
ing assumption that the right hand side term in (16) 
should exceed unity. Assuming the resonant tunings of 
all the fields r A  = rB = y, rc = YM, introducing quality 
factors as Q = w0/(2y) and QM = W M / ( 2 Y M ) ,  recalling 
J F A ( ~ / Y ~  = 4WQ/(fiw:), and using expression (2) we 
derive expression for the threshold value for the pump 
power 

where we assumed that the normalized overlapping inte- 
gral among modes is equal to 1/2. 

Let us estimate the threshold power. For realistic pa- 
rameters for a dielectric whispering gallery mode cav- 
ity coupled to a microwave resonator [16] Q = 3 x lo7,  
QM = lo3, and Vc = cm3 we get Wth = 1 pW. 

Using (7) we rewrite (17) as 

Y 
YM 

Y 1+-  
YM 

wb -k -(wO - Wc) 
(19) w- = 

There is also a ratio between signal and idler amplitudes 
for the case when oscillations occur 

Therefore, if Y M  >> y, the oscillation frequency is pulled 
to the center of the corresponding optical cavity reso- 
nance and photon number in the optical cavity exceeds 
the photon number in the microwave resonator. Other- 
wise the microwave frequency is pulled to the center of 
the microwave resonance. 

Let us calculate now phase diffusion in the system. We 
represent the field operators in form 
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where 6A, 6B, and 6C describe amplitude fluctuations, 
and C$A, C ~ B ,  and Cpc describe phase fluctuations of the 
fields. 

Keeping linear fluctuation terms only we derive an 
equation for C ~ A  - 4~ - Cpc from (9) and (10). This equa- 
tion shows that the evolution of the phase difference is 
stable, hence 

d A  - dB - dC = 0. (24) 
On the other hand 

(25) 

Introducing phase diffusion coefficient as ($2) - 
((d))2 = 2 0  t ,  and taking in mind that the output 
power of the signal and idlercan be written as 
ftw?l(B)l2/Q and WM out 

from (24) and 25) 

DB 

D c  

- - Y2 2 D ~ +  
(Y + YM) 

( w -  - Wb)2  

w- out = 
we derive 

(26) 

(27) 

where DA is the diffusion coefficient for the pump field. 
This coefficient is determined by the source of the pump. 
Because the quality factor of the whispering gallery 
modes may be very high we are able to get a stable gen- 
eration in our system. 

111. UP- AND DOWN-CONVERSION OF LIGHT 
INTO LIGHT AND MICROWAVES: ARTIFICIAL 

x ( 3 )  NONLINEARITY 

Considered above parametric interaction couples two 
light modes and a single microwave mode. The mi- 
crowave field has a frequency nearly resonant with the 
frequency difference of the pump and signal light. This 
picture is valid only if the optical modes are not equidis- 
tant, otherwise the pump light interacts with two optical 
modes having frequencies a b +  N W ,  f wc. The condi- 
tion for parametric oscillations drastically changes in this 
case. 

The Hamiltonian describing this system is 

H = Ho + v.  (28) 

& is the free part of the Hamiltonian 

BO = h f ~ I ~ & ~ &  + h W b - & t & -  + hWb+6$6+ -k f u J c E t E ,  (29)  

where w, and W b f  are the eigenfrequencies of the optical 
cavity modes, we is the eigenfrequency of the microwave 
cavity mode, 6, bh, and i. are the annihilation operators 
for these modes respectively. 

The interaction part of the Hamiltonian is 

V = A g ( 6 t t t ; l  + &:E&) + adjoint. (30) 

Instead of equations Eqs. (8-10) in this case we write 

A = -FAA - ig(B-C + CtB+) +FA,  (31) 
B- = -rB-B- - igCtA + FB-, 

B+ = -rB+B+ - igCA + FB+, 
(32) 
(33) 

C = -rcC - ig(BLA + AtB+) + F M ,  (34) 

where 

F A  = i ( W a  - WO) + 7,  

r B F  = i(Wb* - w y )  + y, 
rc = i ( w c  - W M )  + Y M ,  

A, El*, and C are the slowly-varying amplitudes of the 
cavity mode operators; the optical (7) and microwave 
( Y M )  decay rates as well as pumping forces FA, F B ~ ,  
and FM are introduced similarly to (11) and (12). 

Let us solve set (31-34) in the steady state keeping 
expectation values only. From (32) and (33) we get 

Substituting (35) into (34) we derive (c.f. Eq. (15)) 

This equation has a nontrivial steady state solution if the 
expression in parentheses is equal to zero (c.f. Eqs. (16) 
and (17)) 

Equation (37) determines threshold of the parametric 
oscillations. It shows the power of the pumping light that 
sustains generation of microwave field along with light 
sidebands. It is easy to see that no oscillations occur 
for any (A)  if (wb-  - w - ) ~  2 (wb+ - w + ) ~ .  On the other 
hand, if (Wb+ - w + ) ~  >> (wb-  - w - ) ~  we return to the case 
of usual parametric oscillator considered in the previous 
section. Threshold pump power can be written as 

where we put r, = y, Wth is determined in (18). 
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- 
Oscillation frequencies can be found from (38) if we 

take into attention that 

w+ = w o  f W M .  

Analysis of (38) shows that the frequency of the mi- 
crowaves is determined either by w,, if y >> y ~ ,  or by 
wb+ - wb-, if 7h.i >> y. There is also a ratio between 
signal and idler amplitudes similar to (20) 

(40) 

Let us consider, for instance, a nonlinear cavity with 
exactly equidistant spectrum 

Wbf = w, f G c ,  (42) 

where G, is the frequency difference between the modes. 
Frequency of the microwave field w, is not necessary equal 
to  Gc. Then @th (18) is inversely proportional to  product 
(w, - wg)(& - W M ) .  Therefore, there is no parametric 
process for any pump pump power if the pump is resonant 
with a cavity mode Wth + 00 if Iw, - wg( + 0. However, 
as is shown in the previous section, usual three-mode 
parametric process is the most efficient for the case of 
resonant pump tuning. 

Let us consider now the case when y >> y ~ ,  (wb+ - 
w + ) ~  >> (wb- - w - ) ~  (I(B_)l2 >> l(B+)I2) and find the 
phase diffusion coefficient for beat note for modes B+ 
and B-. To do it we introduce amplitude and phase 
fluctuation similar t o  (21-23) 

- 

A = (!(A)! + 6A)ei(4A+'+'A), 

c = (I(C)( + dC)ei(@c+'Pc), 

(43) 

(45) 

B* = (I(B*)I + 6B+) ei(@B*+'PBf),  (44) 

where q~ = ( E ) / I ( < ) I  is the expectation value of the field 
phase. 

Using this approximation we derive following expres- 
sions that connect phases of the pump and generated 
fields (c.f. [3]) 

$A = $B- f $C = $'B+ - $C, (46) 

Therefore, the phase of the signals beat note is deter- 
mined by phase diffusion of the microwave field 4 ~ +  - 
4 ~ -  = 2 4 ~  has a diffusion coefficient 

Such parametric oscillations have much in common 
with near resonant four wave mixing produced in atomic 
vapors [23]. Namely, i) in those experiments Stokes and 
anti-Stokes optical fields where generated spontaneously 
from vacuum; the same is expected in our case; ii) the 

frequency difference between anti-Stokes and pump fields 
and pump and Stokes fields was equal to  the hyperfine 
splitting of the ground state of rubidium atoms; the fre- 
quency difference is determined by the frequency of the 
microwave field in our case; iii) threshold of the oscil- 
lations in atomic medium was a few pW for the pump 
power; the same level of the threshold pump power is ex- 
pected in our case; iv) in atomic experiments the oscilla- 
tions become possible due to  long lived atomic coherence; 
in our case the role of atomic coherence is played by the 
microwave mode; v) phase diffusion of the beat note of 
the Stokes and anti-Stokes fields generated in atomic sys- 
tem is determined by the atomic coherence life time [37]; 
in our case it is determined by the quality factor of the 
microwave mode (47). Therefore, we have constructed 
an artificial resonant x ( ~ )  nonlinearity using nonresonant 
x ( ~ )  nonlinear medium. 

There is a difference, however, between resonant four- 
wave mixing in atomic medium and in our system: i) the 
atomic medium has essentially nonlinear response that 
leads, in particular, to creation of a "dark state'' that 
does not interact with multifrequency light [38]; there is 
no such a state in our nonlinear system; ii) the Stokes 
and anti-Stokes fields have nearly the same amplitudes 
in atomic medium. In our case the fields have different 
amplitudes. 

IV. OPTICAL COMB GENERATION 

Optical comb generation can be achieved using electro- 
optical modulator with external microwave pumping 
[9, 101. Resonant atomic and molecular systems may 
lead to efficient generation of a comb of optical frequen- 
cies without such pumping [24, 251. It is known also that 
whispering gallery modes result in enhancement of Ra- 
man scattering [26-291. Let us study a possibility of a 
comb generation in our resonant parametric system. 

Let us assume that our system consisting of nonlin- 
ear oblate spheroid microcavity and microwave resonator 
is pumped by a two-frequency light. Each mode of the 
pumping is resonant with a mode of the cavity. The 
frequency difference for the pumping is equal to  the res- 
onant frequency of the microwave resonator. We assume 
also that the cavity modes are equidistant and frequency 
difference between them is equal to  the microwave fre- 
quency. This is true in the first approximation for the 
spheroid [30]. However, even the residual dispersion can 
be compensated [31]. 

Under such conditions two optical fields generate mi- 
crowave field in our system. The microwave field inter- 
acts with the light and generate equidistant frequency 
spectrum. This process is similar rather to  the comb 
generation in atomic medium [24, 251 than to  the usual 
comb generation technique, where microwave field, ap- 
plied to a nonlinear crystal, modulates light [9, 101. 

To describe the comb generation we write interaction 
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Hamiltonian as 
w 

P = hg (iLL-lCtiLn + 6:+1E&) + adjoint. (48) 

where hn is annihilation operator for nth cavity mode. 
We assume that modes are completely identical with 
respect to their quality factor and coupling to the mi- 
crowave field. 

Using (48) we derive equations of motion for the 
modes. For the sake of simplicity we consider the case 
of exact resonance for all the modes. In slowly varying 
amplitude and phase approximation equations for the ex- 
pectation values of the field amplitudes are 

n=-m 

Solution of this equation gives us the amplitude of the 
microwave field. 

Finally we note that actual time dependent amplitude 
of the light can be written as 

(57) A(t) = e-iwot 2 Ane-iwMnt 

n=-cc 

where wo is the carrier frequency of the mode with n = 0. 
Exchanging 8 with -wMt in (53) and (54) we derive 

Let us note here that the signal generated in our system 
Fn(6n>o + 6n1449J is different from the usual phase modulated signal. This 

The width of the frequency comb is determined bv 

An = -yAn - ig(An-lC + 

C = -YMC - ig 
03 occurs because of the saturation of the oscillations. 

(A;-lAn + AAAn+1), (50) 
n=-w 

where Fn stands for the pumping of the modes, & , j  = 1 
if i = j and 6i,j = 0 if i # j .  In other words, we assume 
that only modes with n = 0 and n = -1 are pumped. 

We introduce function 
03 

A(0) = Aneisn, 
n=-w 

and present the amplitude of the microwave field as C = 
IC) exp(i4c). Then rewriting Eqs. (49) in steady state 

multiplying each of them on exp(i8n) (n corresponds to 
the index of term yAn), and summarize them over all n 
we derive 

(53) 
Fo + F- 1 e-ie 

A(8) = 
y + 2iglCI cos(0 + $c).  

The solution for each mode A, can be written as 

(54) 
0 

Eq. (53) contains unknown constants IC1 and 4 ~ .  To find 
them we write Eq. (50) in the steady state 

M 

and substitute there A, (52). This gives us $c = -7r/2+ 
arg ( P l F 0 )  and equation for IC) 

w 

value gICl/r. To have a wide spectrum this value 
should be comparable with a unity. Assuming that both 
pump harmonics have the same power WA and, therefore, 
IF-11 x IF01 we get 

where Wth is the threshold power for the parametric os- 
cillations (18). As we has discussed above this power 
can be as low as p W  for realistic conditions. Therefore 
it is possible to generate a broad frequency comb in our 
system using small pump power. 

V. MULTIMODE REGIME OF 
PONDEROMOTIVE PARAMETRIC 

INSTABILITY 

It was shown recently that long-base gravitational 
wave detectors may safer from parametric instability [21]. 
This instability arises from ponderomotively mediated 
coupling between mechanical oscillations of suspended 
cavity mirrors and probe light that is used for detection 
of the mirrors’ signal shift. The effect is undesirable be- 
cause it might create a specific upper limit for the energy 
stored in the cavity. The sensitivity of the detection in- 
creases with the light power and, hence, such a process 
might pose an upper limit on the measurement sensitiv- 
ity. 

Planed circulating power in the interferometer is about 
1 MW. It was shown that this power exceeds the thresh- 
old for parametric oscillations almost 300 times for realis- 
tic conditions if the optical mode spectrum is not equidis- 
tant (three-wave description of the parametric process is 
valid) [21]. 

We can easily describe the ponderomotive parametric 
instability using the technique presented above. Really, 
the interaction between mirrors’ mechanical oscillations 
and optical modes can be characterized by either Eqs. (8- 
9) or Eqs. (31-34), where C describes mechanical oscilla- 
tions and the coupling factor g is appropriately chosen. 
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- 
Eqs. (31-34). Then the threshold power increases ac- 
cording to (39). Because for long base interferometers 
the main longitudinal mode spectrum is almost equidis- 
tant we might expect that the threshold of the paramet- 
ric oscillations will increase significantly. The problem 
may arise, however, due to transverse modes of the sys- 
tem. Therefore, to understand if the system is stable one 
needs to consider exact mode structure of a particular 
system. FIG. 2: Fabry-Perot cavity with movable mirror. Parametric 

instability is possible due to ponderomotive nonlinearity. 

Let us consider a Fabry-Perot interferometer with one 
movable mirror that has mass m and mechanical reso- 
nance frequency w, (Fig. 2).  Distance between mirrors 
of the resonator is equal to L. Then the coupling constant 
between mechanical degrees of freedom of the mirror and 
optical modes is 

g =  "J-. ri 

L 2mw, (59) 

In the case of not equidistant mode spectrum we may 
consider only two optical modes and mechanical mode 
and use Eqs. (8-9) that gives us the result of [21]. Thresh- 
old power for the oscillations for for resonant tuning of 
the pumping laser follows from 

VI. CONCLUSION 

We have shown that a strongly nondegenerate multi- 
frequency parametric oscillator possesses by different 
properties compared with usual three-wave OPO. As ex- 
amples of such an oscillator, we have studied a scheme 
of all-resonant optical-microwave parametric oscillator 
based on whispering gallery modes excited in a nonlin- 
ear dielectric optical cavity and a long-base cavity with 
moving walls. 
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